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Abstract— The community-based generation of content has
been tremendously successful in the World Wide Web – people
help each other by providing information that could be useful to
others. We are trying to transfer this approach to robotics in
order to help robots acquire the vast amounts of knowledge
needed to competently perform everyday tasks. RoboEarth
is intended to be a web community by robots for robots to
autonomously share descriptions of tasks they have learned,
object models they have created, and environments they have
explored. In this paper, we report on the formal language
we developed for encoding this information and present our
approaches to solve the inference problems related to finding
information, to determining if information is usable by a robot,
and to grounding it on the robot platform.

I. INTRODUCTION

The Web 2.0 has changed the way how web content is
generated. Instead of professional content providers, it is
now often the users who fill web sites with text and images,
forming a community of people helping each other by
providing information they consider useful to others. The free
encyclopedia Wikipedia grew up to millions of articles, sites
like cooking.com or epicurious.com collect tens of thousands
of cooking recipes, and ehow.com and wikihow.com offer
instructions for all kinds of everyday tasks. “Crowdsourcing”
the generation of web sites made it possible to create much
more content in shorter time with shared effort.

In our research, we are trying to make use of this idea
to improve the performance of our robots. On the one hand,
we are working towards enabling the robots to use the large
amount of information that can already be found on the Web
to accomplish their tasks, for instance by translating written
instructions from web pages into robot plans [1]. On the other
hand, we are working towards establishing a similar “World
Wide Web for Robots”, a web-based community in which
robots can exchange knowledge among each other. Under-
standing information intended for humans is still challenging
and rather costly, but once a robot has done it, it can share
this newly gained information with other robots, which then
do not have to go through the difficult conversion process
again. We aim to speed up the time-consuming knowledge
acquisition process by enabling robots to profit from tasks
other robots have already learned, object models they have
created, and environments they have explored.

If such information is to be autonomously generated and
used by robots, that is, without human intervention, it has
to be represented in a machine-understandable format. In
this respect, we have much in common with the Semantic

Fig. 1. The Amigo robot performs a mobile manipulation task based on
task descriptions, object recognition models and a semantic environment
map which it has autonomously downloaded from the RoboEarth database.

Web [2], in which computers exchange information between
each other: The meaning of the content needs to be repre-
sented explicitly, separately from platform-specific aspects,
it has to be described in terms of logical axioms that a
computer can understand, and these logical axioms need to
be well-defined, for example in an ontology. Such an explicit
representation of the semantics is important to enable a robot
to understand the content, i.e. to set different pieces of
information into relation. Only when it knows the semantics
of the exchanged information, a robot can decide if an object
model can be useful to perform a given task, can choose a
model among different alternatives, and determine if it has
all required sensors for using it.

In this paper, we describe our approach to creating a
semantic representation language for the RoboEarth system.
The main contributions are (1) a semantic representation
language for actions, objects, and environments; (2) the
infrastructure for using this representation to reason about
the applicability of information in a given context and to
check if all required robot capabilities are available; (3)
mechanisms for creating and uploading shared knowledge.
These technical contributions are validated by an experiment
on a physical robot that performed a serving task based
on information retrieved using the described methods. In
particular, the representation language provides techniques



Fig. 2. Overview of the RoboEarth system: A central database provides information about actions, objects, and environments. The robot can up- and
download information and determine if it can use it based on a semantic model of its own capabilities.

for:

• Representation of actions and their parameters, positions
of objects in the environment, and object recognition
models

• Meta-information about the data to be exchanged (types,
file formats, units of measure, coordinate frames)

• Requirements on components a robot needs to have in
order to make use of a piece of information

• Robot self-models that describe the robot’s configura-
tion and capabilities

• Methods for matching requirement specifications to a
robot’s capabilities to identify missing components

RoboEarth has high demands regarding the expressiveness
and the level of semantic annotations of the exchanged in-
formation: First, the platform is to be used by heterogeneous
robots, i.e. no assumptions about available capabilities can
be made. Second, the robots shall exchange the information
autonomously without human intervention, which means that
the language has to be expressive enough to provide the
robot with all information needed to select information, adapt
it, and reason about its applicability. These two aspects
have not been tackled in prior work, which focused on the
representation of actions or objects, but not on additional
information that is needed for the autonomous exchange
of information. Hierarchical Task Networks (HTN [3]) and
related plan languages are similar to the action representation
used in RoboEarth, but focus on the description of the task
itself, i.e. its sub-actions, goals, and ordering constraints.
XABSL [4], mainly used in the RoboCup soccer context, de-
scribes actions in terms of hierarchical finite state machines.
AutomationML [5] is a standard for describing task infor-
mation and spatial configurations, mainly used in industrial
applications. The FIPA [6] standard primary deals with the
definition of communication standards for software agents.
Object description formats like the proprietary DXF [7]
or the open Collada [8] standard describe objects using
meshes and textures, but without further specifying semantic
properties. We are not aware of any other system that inte-
grates task descriptions with spatial information, semantic
information about object types, and meta-information about
the exchanged data.

The rest of the paper is organized as follows: We start with
an overview of the RoboEarth system and briefly introduce
an example scenario that is used over the course of the

following actions. We then describe the representations of
actions, object models, and semantic environment maps,
before we elaborate on the matching between action require-
ments and robot capabilities. Afterwards, we explain how
the robot communicates with the RoboEarth database, and
how it makes use of the downloaded information during task
execution. We finish with a description of the experiments
we performed and a discussion of the system’s capabilities.

II. THE ROBOEARTH SYSTEM

This work presented in this article is part of the RoboEarth
project [9] which targets at building a “World Wide Web
for Robots”. Like Wikipedia, RoboEarth is to provide a
platform for sharing knowledge about actions, objects, and
environments between robots. The project covers different
aspects like the generation and execution of task descriptions,
object recognition methods, learning, the realization of the
central web-based knowledge store. Parts of RoboEarth have
been released as ROS packages1. In this paper, we focus
on the methods for representing and reasoning about the
exchanged knowledge (available in the packages re comm
and re ontology).

Figure 2 illustrates how knowledge can be exchanged via
RoboEarth: On the left is the central RoboEarth knowl-
edge base, containing descriptions of actions (called “ac-
tion recipes”), objects, and environments. These pieces of
information are provided by different robots with different
sensing, acting and processing capabilities. Therefore, all
of them have different requirements on capabilities a robot
must have in order to use them, visualized by the differently
shaped jigsaw pieces. The RoboEarth language thus provides
methods for explicitly describing these required capabilities
and for matching them against capabilities available on the
robot. Each robot has a self-model consisting of a description
of its kinematic structure, including the positions of sensors
and actuators, a semantic model that describes the meaning
of the robot’s parts (e.g. that certain joints form a gripper),
and a set of software components like object recognition
systems. We use the Semantic Robot Description Language
(SRDL [10]) to describe these components and the capabili-
ties they provide, and to match them against the requirements
specified for action recipes. Section VI explains the process

1Available at http://www.ros.org/wiki/roboearth



in more detail. The robot can query the RoboEarth knowl-
edge base using interface methods that perform information
encoding and communication (see Section VII).

The representation language is realized as an extension
of the KNOWROB [11] knowledge base, which we also use
for grounding the downloaded descriptions on the robot (Sec-
tion VIII). In KNOWROB, knowledge is described in Descrip-
tion Logic using the Web Ontology Language (OWL). OWL
distinguishes between classes, instances of these classes, and
properties that can either be described for single instances
or for whole classes of things. Classes are arranged in a
hierarchical structure, called an ontology, allowing multi-
ple inheritance. KNOWROB’s ontology is derived from the
OpenCyc ontology [12] and itself serves as the basis for the
RoboEarth ontology. We extended the KNOWROB ontology
with concepts that are especially required for the exchange of
knowledge: Meta-information about the data to be exchanged
like units, coordinate systems, its resolution, algorithms that
were used for creating data, and requirements that are needed
for interpreting it.

For the sake of clarity, we will present most of the
language constructs in terms of graphical visualizations
instead of source code. A more detailed description of the
language capabilities can be found in a related technology
report [13], a formal specification of the language elements
in the ontology at http://ias.cs.tum.edu/kb/roboearth.owl.

In the following sections, we will explain the operation
on an example task on which the system’s capabilities have
been demonstrated: serving a drink to a patient in bed in a
hospital room. The robot first needs to find a bottle in the
environment, pick it up, move to the patient and hand over
the bottle.

III. ACTIONS AND TASKS

Action specifications, called “recipes”, are described in
terms of classes of actions that are arranged in a taxonomic
structure. Figure 3 shows a small excerpt; in total, there are
currently about 130 action classes. Users of the system can
easily extend the set of actions by deriving new action classes
from the existing ones. These classes form the vocabulary for
describing actions, and each of them can be described by a
set of properties: For instance, an action of type Movement-
TranslationEvent can have the properties fromLocation and
toLocation. Such a specification of classes by their properties
is called a “class restriction” in OWL.

Fig. 3. Small excerpt from the RoboEarth action ontology that describes
different kinds of actions in terms of a taxonomic structure.

Actions can be arranged in a hierarchy describing the compo-
sition of complex actions from more basic ones, in addition
to the generalization hierarchy in Figure 3. As an example,

the action PuttingSomethingSomewhere for transporting an
object from one position to another involves picking up an
object, moving to the goal position, and putting the object
down again. These sub-actions are described in the following
OWL code example:
Class: PuttingSomethingSomewhere
SubClassOf:

Movement-TranslationEvent
TransportationEvent
subAction some PickingUpAnObject
subAction some CarryingWhileLocomoting
subAction some PuttingDownAnObject
orderingConstraints value SubEventOrdering1
orderingConstraints value SubEventOrdering2

The ordering of subActions in a task can be specified by
partial ordering constraints which describe the relative pair-
wise ordering between the actions.
Individual: SubEventOrdering1
Types:

PartialOrdering-Strict
Facts:

occursBeforeInOrdering PickingUpAnObject
occursAfterInOrdering CarryingWhileLocomoting

Individual: SubEventOrdering2
Types:

PartialOrdering-Strict
Facts:

occursBeforeInOrdering CarryingWhileLocomoting
occursAfterInOrdering PuttingDownAnObject

Figure 4 visualizes an action recipe for serving a drink to a
patient in bed. In this picture, action classes are represented
as blocks, properties of these classes are listed inside the
block, and ordering constraints among the actions are shown
as arrows between the blocks. There are three levels of
hierarchy: The recipe for the ServeADrink action includes
the GraspBottle action that, by itself, is defined by an
action recipe (shown on the right side) consisting of single
actions. Both recipes consist of a sequence of actions that are
described as task-specific subclasses of generic actions, like
Reaching or Translation, with additional parameters, like the
toLocation or the objectActedOn.
The action recipe further lists dependencies on components
that have to be available on the robot in order to success-
fully perform the task. In this example, there is a list of
object recognition models that are necessary for the robot
to recognize all objects involved in the task. There are
additional dependencies inherited from higher-level action
classes: Reaching, for example, depends on an arm motion
capability, Translation actions require a moving base and
navigation capabilities.

IV. OBJECT MODELS

Object models in RoboEarth describe classes of objects by
their semantic properties, including information on how to
recognize and how to articulate them. Figure 5 exemplarily
shows a model of a cabinet in a hospital room. In the upper
part, there is an instance of an object recognition model that
includes links to pictures and a CAD model file as well
as information about the creation time and the algorithms
the model can be used with. The ontology already provides
class descriptions for several thousands of objects, but can



Fig. 4. Representation of a “serving a drink” task, called “action recipe”
in the RoboEarth terminology, which is composed of five sub-actions that
themselves can be described by another action recipe.

easily be extended by the user – a process that can also be
automated using information from the Internet [14].

This model refers to a description of the object IkeaExpe-
ditShelf2x2 which has articulated parts, namely doors con-
nected to the frame via hinges. By estimating the kinematics
of these doors [15], the robot can determine the poses of the
hinges with respect to the body of the cabinet. These poses
are stored using an object-internal coordinate system so that
the information can also be applied to a different cabinet of
the same type. If such a cabinet has been recognized using
the model ObjModelExpeditShelf2x2, the relative coordinates
are transformed into global map coordinates based on the
pose where the cabinet body was detected. In addition to
this explicit representation of coordinate frames, all numeric
values can be annotated with the unit of measure provided
by the extensive QUDT ontology2. If a user specifies the unit
the results are to be returned in, values in compatible units
are transparently converted, e.g. lengths from meters to feet.

The set of object models the robot can currently recognize
is explicitly represented in the robot’s knowledge base and
can be used to decide if some kind of object can be
recognized. If not, the robot can download a suitable model
from RoboEarth, add its OWL description to its knowledge
base, and send the recognition model (in the above example
the linked CAD model file) to the perception system.

V. ENVIRONMENT MODELS

There are various kinds of environment maps (topological
and metric maps, two- and three-dimensional maps, maps
created using different sensors like 2D laser scanners, tilting
lasers or cameras, etc) that can be exchanged via RoboEarth.
The language provides several classes to describe the types

2http://qudt.org/

Fig. 5. Object model representation. The object model instance refers to
binary data for a model as well as to a detailed description of the object
class to be exchanged. In this case, the model describes a cabinet composed
of several articulated doors connected with hinges to the cabinet’s frame.

and properties of environment maps. Maps like occupancy
grids are usually exchanged as a “black box”: The robot
knows which kind of map it is and which environment is
described, but cannot perform reasoning about the content
of the map. “Semantic maps”, which consist of localized
object instances (Figure 6), are a different case: They can be
completely described in OWL, loaded into the knowledge
base and reasoned about. The robot can for instance use
such a map to locate objects described in a recipe, or update
the map with other objects it has recognized. If there are
multiple maps describing the same environment, the system
retrieves all of them.

Fig. 6. Environment model representation. The map F360-Containers links
a binary file for the localization map and further contains several objects
detected in the environment. Object poses are linked via a SemanticMap-
Perception instance to be able to describe poses that change over time.

VI. MATCHING REQUIREMENTS TO CAPABILITIES

In order to find out if the robot is able to execute a
recipe and, if not, whether it can be enabled to do so by
downloading additional information, the system matches the
requirements of the action recipe to the robot’s capability
model. Although this procedure cannot guarantee successful
task execution, the robot can determine whether something
is definitely missing and if that missing part can be provided
by RoboEarth.

The matching process is realized using the Semantic
Robot Description Language (SRDL [10]) and visualized in
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Fig. 7. Matching requirements of action recipes against robot capabilities
to determine which further information is still missing and has to be
downloaded. The matching becomes more flexible by taking the robot’s
knowledge into account and selecting the 2DLaserScannerMap to fulfill the
general requirement on an EnvironmentMap.

Figure 7. The robot first queries for an action recipe and,
together with the query, sends a description of its own capa-
bilities to the inference engine, which then checks whether all
requirements of the recipe are available on the robot. At first
sight, the robot may find the EnvironmentMap to missing,
as it is neither available on the robot nor in the RoboEarth
database. Knowing that both a 2DLaserScannerMap and
a 3DLaserScannerMap are specializations of an Environ-
mentMap, the system can infer that they can be used to fulfill
the dependency. It recursively checks their dependencies and
finally selects the 2DLaserScannerMap as its dependencies
are available on the robot. The matching process is continued
recursively until the system finds a combination of action
recipes, object- and environment models that fits the robot
and does not have any unmet dependencies. This example
is very simplified in that it only requires knowledge about
the sub-class hierarchy, while the matching procedure also
supports checking other properties of or relations between
objects – everything that can be expressed in terms of OWL
class restrictions.

VII. INTERFACE TO THE ROBOEARTH DATABASE

Once the missing pieces of information have been de-
termined, they can be searched in the RoboEarth knowl-

edge base. A communication module provides methods
for up- and downloading information using HTTP requests
and encapsulates the communication with the web-based
RoboEarth knowledge base. The communication package
further provides methods to update existing knowledge, for
instance an environmental map with updated object positions
or an improved action recipe. There are different possibilities
to send queries to the knowledge base: If the identifier
of an action recipe, object model or environment map is
known, e.g. because another recipe refers to it, this item can
directly be accessed. Otherwise, queries are send as a logical
specification of the properties a recipe or model needs to
have. For example, the robot may search for a recipe that
describes a Serving task with a Bottle as objectActedOn, and
get all recipes for specializations of such a task as result.

VIII. EXECUTING ACTION RECIPES

Having downloaded information from RoboEarth, the
robot has to ground the abstractly specified instructions. The
action recipes need to be translated into calls to executable
program code. Similar to HTN planning, which distinguishes
primitive and compound tasks, we also de-compose complex
tasks into more and more basic actions until we reach
the level at which the actions are available as executable
primitives. There is intentionally no fixed level of granularity
at which this transition takes place. The system thus supports
large, monolithic implementations of functionality, in which
the threshold between primitives and recipes is at a rather
high level, as well as setups with a large number of small
components. Due to the hierarchical structure of recipes, the
same high-level recipe can be executed in different setups
by downloading more detailed action recipe until all actions
in the recipe are available as primitives on the robot.

There are currently two options for executing action
recipes: First, the rather simple RoboEarth executive compo-
nent can be used, which uses mappings from action classes
to action primitives that are specified using the provided-
ByMotionPrimitive property. For the scenario in the exper-
iment, only three primitives were needed: move gripper,
open gripper and navigate. The second option is an ex-
porter that creates action plans in the CRAM plan language
(CPL, [16]) which can be executed by the CRAM executive.
This allows to profit from CRAM’s sophisticated techniques
for failure monitoring and recovery, and especially for deter-
mining action parameters like locations where objects shall
be placed. Such locations are usually described using abstract
specifications like ’in reach of the patient’, and need to
be translated into actual metric positions. This conversion
requires sophisticated reasoning methods that include geo-
metric and kinematic information, which are provided by
the CRAM system [17].

IX. EVALUATION

This paper describes a system for representing, exchanging
and reasoning about high-level task descriptions, object mod-
els, and semantic environment maps in a common semantic
framework. A quantitative evaluation of such a system is



hardly possible: Most task-related performance measures,
like the execution time, rather describe the performance of
external factors like the hardware of the executing robots
than the representation language. However, the system can be
evaluated on qualitative criteria: Is the representation expres-
sive enough to encode all important kinds of information?
Are all of the necessary reasoning tasks supported? Which
level of autonomy can be reached?

In a recent experiment, we have demonstrated that the
language and inference methods can be used to exchange
information about mobile manipulation tasks. This experi-
ment was implemented and successfully demonstrated to the
public during a workshop of the RoboEarth project in Eind-
hoven in January 2011. Figure 1 shows the course of actions
performed by the robot. A video of the experiment can be
found at http://www.youtube.com/watch?v=RUJrZJyqftU.

The task the robot performed was to serve a drink to a
patient in a hospital room. During the experiment, the robot
downloaded the action recipe and matched it against its capa-
bilities to determine which pieces of information are missing
(as described in Section VI). It downloaded these missing
components from RoboEarth, namely recognition models for
all objects in the task, and a semantic environment map of
the hospital room. During execution, the robot perceived the
objects using the downloaded models and thereby grounded
the symbols described in the recipe in object perceptions in
the environment.

The experiment shows that the system is able to encode
the information required for mobile pick-and-place tasks.
The Amigo robot completely autonomously downloaded the
action recipe, determined which information was missing,
additionally downloaded these pieces of information, and
thereby enabled itself to perform the task. All these reason-
ing tasks were performed autonomously using the methods
described in this paper.

X. DISCUSSION AND CONCLUSIONS

In this paper, we discussed the requirements to a formal
language for representing robot knowledge with the intention
of exchanging information, and presented our approach to
realizing such a language. The language allows to describe
actions, object recognition and articulation models, as well as
semantic environment maps, and provides methods to reason
about these pieces of information. Using the language, robots
can autonomously decide if they lack important capabilities
to perform an action, and if so, see whether they can
download software that enables them to do that.

The language and the accompanying reasoning meth-
ods have successfully been used to exchange tasks, object
models, and environment information on a physical mobile
manipulation robot and execute the abstractly described task.
This experiment showed that the presented methods enable
a robot to download the information needed to perform
a mobile manipulation task, including descriptions of the
actions to perform, models of the objects to manipulate,
and a description of the environment, from the RoboEarth
database on the Internet. The current system is still limited

regarding the exchange of low-level information like motion
trajectories, forces or accelerations. Currently, they need
to be determined by the downloading robot using motion
planning components based on symbolic constraints in the
recipe, which can be a limiting factor for actions that require
dexterous manipulation.
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