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Abstract. In this paper, we describe representations and inference tech-
niques that are used in the RoboEarth system for the web-based ex-
change of information between robots. We present novel representations
for environment maps that combine expressive semantic environment
models with techniques for selecting suitable maps from the web-based
RoboEarth knowledge base. We further propose techniques for improv-
ing class-level object models with additional information as needed for
distributed learning of object properties. In an integrated experiment,
we show that the system enables robots to perform mobile manipula-
tion tasks including the retrieval of suitable environment maps and the
estimation and exchange of object property information.

1 Introduction

The RoboEarth system [1] is designed as a web community by robots for
robots: Similar to community-driven web pages for humans, such as Wikipedia,
which enable humans to exchange knowledge among each other, RoboEarth

allows knowledge exchange between robots. When one robot has learned how to
perform a task or has created an object model, it can upload this information
to RoboEarth. Other robots can later download it and do not have to learn
everything on their own again.

Since the platform is intended to serve for exchanging various kinds of infor-
mation among heterogeneous robots with different capabilities, the development
of appropriate techniques for finding relevant information becomes a challeng-
ing problem. When humans search for information on the Web, they can easily
distinguish relevant from irrelevant information (e.g. search results caused by
ambiguous meanings of the search terms) and filter out information they cannot
make use of (e.g. text written in a language they do not understand). Realiz-
ing these capabilities on a robot requires powerful knowledge representation and
reasoning techniques.

A central part of the RoboEarth project is thus the development of an ex-
pressive, formal representation language to encode the exchanged information. It
helps the robot answer questions such as: Which descriptions exist for the task to
be performed? Which of them can be used given the robot’s hardware and soft-
ware configuration? Are all required capabilities available? Which object models



are needed to perform the task? Are there maps that describe the environment
the robot is to operate in, which kinds of information do they provide?

Autonomously taking these decisions requires access to meta-information
that describes which kind of knowledge is encoded in which format, includ-
ing for instance which coordinate systems are used for spatial information or
which capabilities are needed to perform a task. This requires more compre-
hensive representations than commonly used for describing actions, objects, or
environment structures in robotics. Related approaches usually focus on the rep-
resentation of the information content, e.g. the spatial information in a map, but
do not describe meta-information, e.g. which environment is actually described
in that map. Hierarchical Task Networks (HTN [2]) and related plan languages
are similar to the action representation used in RoboEarth but focus on the
description of the task itself, i.e. its sub-actions, goals, and ordering constraints.
XABSL [3], mainly used in the RoboCup soccer context, describes actions in
terms of hierarchical finite state machines. AutomationML [4] is a standard for
describing task information and spatial configurations, mainly used in indus-
trial applications. The FIPA [5] standard primary deals with the definition of
communication standards for software agents. Object description formats like
the proprietary DXF [6] or the open Collada [7] standard describe objects using
meshes and textures, but without further specifying semantic properties.

In [8], we gave a general overview of the representation language used in
RoboEarth. In this paper, we will first describe the work-flow for download-
ing information from RoboEarth to show how the reasoning processes are
integrated into the overall system. Then, we will focus on two specific reason-
ing problems, namely the representation and discovery of map information in
RoboEarth, and the retrieval, improvement and sharing of object models.

The main contributions of this paper are the following: We present novel
representations for environment maps that combine the expressive semantic en-
vironment models introduced in [9] with explicit descriptions of the environment
that is described in the map, and with techniques for selecting suitable maps
from a web-based database. We further present novel techniques for improving
class-level object models with additional information as needed for distributed
learning of object properties.

2 Retrieving Information Needed for a Task

A common scenario inRoboEarth is that a robot is given a task that it does not
have a plan for. This means the robot needs to obtain an action plan and identify
and retrieve missing components such that it, in the end, has all information it
needs to successfully accomplish the task.

We assume that the robot has initial knowledge about the environment it
is operating in, for example the address of the room (see Section 3.3), and a
semantic model of itself, including its hardware and software components and
abstract capabilities. This self-model needs to be created only once for each
kind of robot and is described using the Semantic Robot Description Language



(SRDL [10]). When the robot acquires additional capabilities, e.g. by download-
ing an object model from RoboEarth, it adds them to its self-model so that
they are available for future queries.

Figure 1 outlines the main inference steps involved in the retrieval of infor-
mation. These inferences are performed before the robot starts to execute the
task and ensure the availability of all components that are required for this task.
First, the robot checks whether it has a map of the environment at hand and,
if not, downloads one from RoboEarth to obtain information about free space
and obstacles as well as about objects in the environment. The next step is to
search for task descriptions, called “action recipes”, that describe on the one
hand which actions need to be performed, and, on the other hand, list depen-
dencies the task has in terms of components and capabilities. The robot matches
this specification against its self-model and iterates over all missing components
to check whether they can be obtained from RoboEarth. If all missing compo-
nents can be provided, the system converts the action recipe into an executable
action plan in the CRAM plan language (CPL, [11]) and sends it to the CRAM
executive.

Fig. 1. Flowchart describing the process for downloading information from
RoboEarth. Based on the command to perform a task, the robot determines which
information it needs and downloads the required descriptions from the RoboEarth

knowledge base.

The representation language [8] represents knowledge using the Web Ontol-
ogy Language (OWL) as an extension of the KnowRob knowledge base [12].



The ontologies and software modules are available online as open source soft-
ware.1

3 Representation of Environment Information

Figure 2 visualizes different kinds of environment maps that can be described and
exchanged via RoboEarth. Their descriptions consist of two parts: the repre-
sentation of the map’s content, described in Section 3.1, and of the environment
that is described in this map, which will be introduced in Section 3.3.

Fig. 2. Representations of different kinds of environment maps. Each map consists of
an OWL description of its type and properties and optionally a binary file. In the case
of semantic maps, the OWL description also describes the objects that are part of
the map. The map is linked to a description of the environment it describes via the
describedInMap relation.

3.1 Types of environment maps

For all tasks that include navigation or interaction with objects, a robot needs
an environment model to plan its actions. Depending on the action to be per-
formed, different kinds of maps are needed: Occupancy grid maps discriminate
between free space and obstacles for localization, navigation and obstacle avoid-
ance. Semantic environment maps contain localized object instances and can be
used for grounding abstract object descriptions contained in an action recipe.

1 Online: http://ros.org/wiki/knowrob, http://ros.org/wiki/re ontology



Maps are described by an OWL specification of its type and properties that
can optionally be linked to binary files. After download, the OWL description is
parsed, which creates an instance of the respective type of map in the knowledge
base such that the robot ’knows’ that the map is available. Depending on the
type of the map, the system can decide how to proceed after download: For
example, a serialized occupancy grid is sent to the localization and navigation
routines.

3.2 Spatio-temporal Object Pose Representation

Semantic environment maps consist of a set of typed, localized object instances.
Based on the type, one can retrieve semantic information about the objects that
is described at the class level, for example descriptions of physical parts, articula-
tion properties, or CAD models to be used for recognition, spatial reasoning and
visualization. Section 4 describes in detail how these properties are described for
object classes.

To account for the dynamics in the environment and in order to be able to
describe changes in the world, introduced by the robot itself or external effects,
the representation of object instances can store and reason about changes in
object poses. Multiple detections at different poses can be attached to an object
instance; each of them is annotated with a time point and the perception method
that has been used. This spatio-temporal object representation can be generated
automatically from perceptual information and provides a flexible way of inte-
grating novel information about objects into the knowledge base. It is described
in more detail in [8].

3.3 Discovery of suitable maps for the robot’s environment

In order to exchange maps with other agents, a robot needs to be able to describe
which environment the maps belong to. This information is very important in
the RoboEarth setup as it allows to specify which maps are desired when
sending a request to the knowledge base. Since environments can be described
in many different ways, the representation should support a spatial hierarchy
(city – street – building), a semantic hierarchy (room – kitchen), and different
labels for the same room.

We have developed a flexible approach that is similar to the human way
of describing an address: Maps are annotated with data like the city, street,
building, floor, room number or room type they describe, as shown in the right
part of Figure 2. These components are linked by a transitive part-of relation.
This allows to query for combinations of these levels, e.g. to search for all maps
of a kitchen in Karlstrasse in Munich, or for all rooms on the third floor of
Karlstrasse 45. It further allows to combine labels, such as room numbers, with
types of rooms (private homes usually do not have room numbers) and to attach
multiple labels to the same physical entity (Karlsplatz and Stachus are two
names for the same square in Munich).



The representation can be combined with other techniques for searching
for environment maps: Searching by GPS coordinate would be useful for field
robotics, while there is normally no GPS signal available indoors. Alternatively,
one can also assume that the robot is continuously localized (quantitatively or
qualitatively) in a hierarchy of metric and topological maps, and that it can
detect when it runs out of one map. In this case, it can search for an extension
map describing the new area. This method, however, requires modification of
the lower-level map management infrastructure.

4 Retrieving and Improving Object Models

While the information a robot perceives is at first environment-specific, there are
often generic pieces of information that can be extracted from it. For example, if
the robot estimates the articulation properties of an object [13], this information
is a priori specific to the object instance the robot was interacting with. If the
object, however, is an instance of a common type, it may make sense to extract
the generic information and share it with other robots. For this reason, we have
developed methods to generate class-level object models, taking a specific object
instance as an example.

Fig. 3. Schematic overview of the object model up- and download. Robots can re-
trieve an object model from RoboEarth, instantiate the model if the object has been
perceived in the environment, estimate additional properties, and upload a model gen-
erated from this object instance to share the new information with other robots.

Figure 3 shows the life cycle of an object model: During the initialization
phase, shown in Figure 1, the model is downloaded from RoboEarth. If the



robot detects the object in the environment, the abstract class-level model is
instantiated at the respective position, recursively translating all object-intrinsic
coordinates into global map coordinates. During interaction, the robot estimates
object properties like the positions and types of joints and adds them to the
object instance. After finishing the task, it checks which pieces of information
have been updated and for which sharing makes sense.

For these objects, it extracts a class-level (TBOX) model and uploads it
to the RoboEarth knowledge base. The RoboEarth language supports the
explicit specification of coordinate frames (e.g. map-global, relative to other
objects or other components of the same objects, or qualified using frames in the
ROS tf system2), and provides methods for the conversion between coordinates
in different frames. By recursively converting the coordinates and translating
instance-level descriptions into class restrictions, the system can create an object
model that includes the new information.

5 Experiments

In a recent experiment, we have investigated how these methods can enable
robots to perform a drink serving task in a previously unknown environment. The
experiment has been done in two locations with two different robot platforms, a
PR2 and the Amigo robot. Both robots were only equipped with the command
and the address of the environment they were operating in and successfully down-
loaded all information required for the task. Compared to prior experiments [8],
the robots thus had to operate with less initial information and perform more
inference to find, select and apply information from the RoboEarth knowledge
base.

The upper part of Figure 4 shows the environment maps that have been
downloaded from RoboEarth. RoboEarth offers a SerQL [14] query inter-
face.3 The following query has been used to download the map information:

s e l e c t source from context source {R}
kr : describedInMap {S} ;
kr : roomNumber {N}
where N l i k e ”3001”
us ing namespace
kr=<http :// i a s . c s . tum . edu/kb/knowrob . owl#>;

Based on this map, the robots (Figure 4 bottom) could navigate to the appro-
priate positions and locate the objects required for the task. The action recipe
to be used was selected using the following query:

s e l e c t source from context source {A}
r d f s : l a b e l {” se rve a dr ink ”ˆˆxsd : s t r i n g }
us ing namespace
r d f s=<http ://www.w3 . org /2000/01/ rdf−schema#>

The action recipe was then matched against the robots’ capabilities with the
result that all required capabilities were available, but some recognition models

2 http://ros.org/wiki/tf
3 http://api.roboearth.org



Fig. 4. Top: Semantic environment maps of the two hospital rooms, downloaded from
RoboEarth based on the address and room number. Bottom: PR2 and Amigo robots
opening the cabinet and picking up the drink to be served.

for some of the objects mentioned in the task were missing (namely the bottle
and the bed), which have been downloaded, including the CAD models shown
in Figure 4. The following CPL plan was then generated from the action recipe:

( def−top− leve l−plan serve−a−drink ( )
( with−des ignators (

( bo t t l e 1 ( ob j e c t ‘ ( ( name bo t t l e 1 )
( type dr ink ing−bott l e ) ) ) )

( bed1 ( ob j e c t ‘ ( ( name bed1 )
( type bed p iece−o f− fu rn i ture ) ) ) )

( hand−pose−handover1 ( l o c a t i o n ‘ ( ( on , bed1 ) ) ) )
( robot−pose−handover1 ( l o c a t i o n ‘ ( ( to reach )

( s i d e : r i g h t )
( l o c , hand−pose−handover1 ) ) ) )

( arms−at101 ( ac t i on ‘ ( ( type t r a j e c t o r y )
( pose , hand−pose−handover1 )
( s i d e : r i g h t ) ) ) )

( unhand−action102 ( ac t i on ‘ ( ( type open−gripper )
( s i d e : r i g h t ) ) ) )

)

( ach ieve ‘ ( object−in−hand , bo t t l e 1 : r i g h t ) )
( at− l ocat ion ( robot−pose−handover1 ) )
( ach ieve ‘ ( arms−at , arms−at101 ) )
( ach ieve ‘ ( arms−at , unhand−action102 ) ) ) )

This experiment shows that the representation and reasoning mechanisms
in RoboEarth can be used to represent and select information about human
environments and mobile manipulation tasks. They have successfully been used
by two heterogeneous robots in different environments who both performed the
same mobile manipulation task.



6 Discussion and Conclusions

In this paper, we presented novel methods for exchanging information between
robots with a focus on two applications: the exchange of environment maps and
of object models. Regarding maps, we discussed the representation of the dif-
ferent kinds of maps and the relation between the maps themselves and the
environments they describe. These techniques allow easy discovery of informa-
tion in the database using only information that can realistically be assumed to
be available on the robot. Object models are described by a combination of a
semantic description in OWL with (binary) recognition models and support the
representation of a component hierarchy as well as articulation properties. We
showed that object class descriptions can be downloaded and be instantiated
once the corresponding object has been detected in the environment. Based on
these instances, the robot can estimate additional information, attach this in-
formation to the object, and share the newly acquired information with other
robots. The presented methods significantly raise the level of semantics and are
a big step towards robots that autonomously exchange information. Challenges
to be addressed in the future include the question of which pieces of information
are actually worth being exchanged.
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